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D I S T R I B U T I O N  O F  T H E  P A R A M E T E R S  O V E R  T H E  

V E R T I C A L  I N  A B R E A K - T H R O U G H  W A V E  

M. I. Abu-Khalava  and M. T. Gladyshev UDC 532.59 

We investigate the distribution of  the parameters of  f low over the vertical in a break-through wave. 

Different approaches in the theory of a break- through wave are considered in [1 ], but here  we investigate 

a problem that up to now has not been studied in the literature. 

1. Genera l  S ta tements .  In recent  years ,  in connect ion with increased  cons t ruc t ion  of h i g h - p r e s s u r e  

hydroelectr ic  structures,  investigations of open water  flows with relatively high velocities ( 2 0 - 3 0  m / s e c  and  higher) 

are being intensively developed. One of the specific features of such processes is the occurrence of aerat ion,  which 

is a spontaneous trapping of air by a water  flow. 

By now, many  facts have been accumulated that  are indicative of the great influence of air  bubbles on the 

s tructure of turbulence in a stream channel.  The  investigations of F. I. Frankl,  G. I. Barenblatt ,  and others ,  which 

contain a thorough and sound approach to the mechanism of turbulent  motion of a two-component  medium,  are  at 

the same time very complex and do not allow one to obtain practical results. The  contemporary  hydrodynamics  of 

mult iphase systems [2-5 ] is also far  from aerated flows. There  is a theory of gas-liquid flows, but it is for  motion 

in a tube. Here,  one of the unsolved probelms of the theory of aera ted flows is the vertical distr ibution of the 

parameters  of a l ready formed (developed) aerated flow. Below, we under took investigation of this problem. 

We assume that a break- through wave is an aerated open flow, i.e., a mixture  of water  with air  (Fig. 1). 

Usually, the fact of suction of air by the water s tream in the same break- through wave is ignored. Below, we suggest 

an approach that takes account of the fact of the presence of air in an open flow. 

The  main problem of investigations is determinat ion of the shape and size of the break- through wave and  

the distributions of velocity and densi ty over its thickness, width, and length. If a moving break- through  wave is 

considered as a flow of a certain continuous medium (almost always turbulent) ,  then this informat ion can be 

obtained in principle. But no equations are as yet available that would give the distr ibution of its parameters  over 

all three spatial coordinates at each instant of time and would constitute a complete system (i.e., a sys tem in which 

the number  of equations is sufficient for their  solution from the prescribed external  conditions).  T h e y  are  absent  

even for turbulent  flows of water,  whereas a break- through wave is a much more complex phenomenon.  

To calculate a break- through wave, it is possible to use complete systems of two types: 

1. Equations are constructed on the assumption that the change in the parameters  over the length and  width 

of the break- through wave can be neglected. Using these equations, if is possible to find the distr ibution of velocity 

and densi ty over the thickness of the moving layer.  However, then the presence of the leading front is ignored,  

and its motion is not calculated, so that these equations describe the motion not of a break- through wave, but  ra the r  

of a certain infinite flow of a water-air  mixture. 

2. Hydraul ic  equations for the break- through wave average all the parameters  used over the thickness of 

the moving layer,  i.e., the distribution of the thickness-averaged velocities is described along and across the break-  

through wave. Models of this type are considered in [1 ]. At the present  stage of investigations it seems that  the 

most promising models for calculating the characteristics of a break- through wave are hydraul ic  ones. 

2. Formulat ion of the Problem of the Distribution of the Parameters  of  a Flow over  the Thickness .  We will 

consider one of the models that refer  to the first type, i.e., we will use complete (not averaged over the thickness) 
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Fig. 1. Scheme of motion of an aerated flow: 1) ground or structure,  2) water, 

3) aerated flow, 4) air. 

equations of the hydraulics of turbulent  flows of mixtures of different  components  (water and air).  To  s tudy the 

motion of an aera ted  liquid, a simplified model is suggested in which water  and air are considered not separately,  

but as a cont inuous medium of variable densi ty.  

In accordance with the conservation laws, the densi ty Pmix and velocity Vmi x of this type of medium (a 

mixture) can be represented in the following way: 

Pmix = Pliq (1 -- S)  + pO s ; PmixVmix = Pliq (1 - s) Vii q + P o S V .  

For an aera ted  flow s << 1. Therefore  we have 

Pmix = Pliq + PO S ; PmixVmix = PliqVliq + POSv  �9 (1 )  

Below, for convenience instead of the function s we will consider p = pO s ,  i.e., the mass of air  per unit 

volume of the mixture.  Then  Pmix = ,Oliq + P" The liquid is considered to be incompressible,  i.e., Pliq = const. The  

velocities of the liquid and the air particles in the mixture are different.  To determine them, it is necessary  to s tudy 

the motion of each component  separately,  and this greatly complicates the problem. Therefore ,  in s tudying an  

aerated flow as a continuous medium, some hypotheses about  the coupling of the velocities of the components  are  

usually assumed.  We will adopt one of those most widely used: 

V = Vii q + a .  (2 )  

Here  a depends on the concentrat ion of the particles, but at a small concentrat ion it can be taken to be constant .  

Now 

Vmi x = Vii q + a /9 
Pliq + P 

I f  I Vliql >> l a l ,  then the velocity of the mixture differs insignificantly from that  of the liquid. Therefore ,  

one can judge the behavior of the velocity of the mixture by the behavior of the velocity of the liquid Vii q. 

Thus  we will s tudy two quantities: p a n d  Vliq{U , V, W} as functions of space and time. We will consider  the 

problem of the turbulent  motion of a mixture  over a uniform plane slope. 

The  coordinate system is selected in the following way: the x axis is along the slope downward,  the y axis 

is perpendicular  to the slope upward, the z axis is across the slope. We assume that ~p = const, O / O z  -- 0, w = 0, 

O / O x  = 0. From the equation of the incompressibility of the liquid we have v = 0. The  general system of turbulent  

flows yields the following system for p and u: 

0-8- - a cos gJ 0_p Om Ou Ou Or Ou 
Ot Oy - Oy ' (p  + Pliq)  ~ -  = a cos  g, ~ y  = p g sin g, + ~y + m -0--yy" (3) 
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Here  the following notat ion is introduced: 

f , f i 

r n  -.= - -  v p  , r = - -  (,o + P l i q )  u v  . ( 4 )  

These  quantities are unknown; to close the system, we need hypotheses  for them. We can always write 

0 (p + Pliq) u Op 
= - v m = - k -  ( 5 )  

Oy ' Oy 

and can formulate the hypotheses  for v and k. The  majority of the existing hypotheses  are constructed in such a 

manner  that v - O u / O y .  This is acceptable if the velocity profile is described by a monotonic function. But if it has 

an ex t remum,  where Ou/Oy- -  0, which is usually observed in open flows, then according to the hypothes i s  

v - O u / O y ,  there is no turbulent  mixing at this place. This is unlikely. A number  of o ther  assumptions do not give 

a logarithmic velocity profile near  the wall, which would have been confirmed experimental ly.  Therefore ,  to s tudy 

nonsta t ionary motions near  the boundary  (the velocity profile is nonmonotonic) ,  a new hypothesis  is suggested: 

1 
~Y 

a y  

(6) 

It gives a logarithmic profile of the velocity in a homogeneous medium that moves along a horizontal  solid wall at 

any value of a ,  and v and k vanish nowhere.  The  proportionali ty factor in formula (6) takes account of the influence 

of the nonuniformity in the densi ty of the medium in the gravity force field: 

1 

v = C ( a )  y f Ou d y = f  y ,  - - ~ ,  a . 
a y  

(7) 

For a homogeneous medium f - -  1, and for now we will avail ourselves of this approximation for the function 

f. Equations (3) and (5) with hypothesis  (7) form a closed system. We consider  the boundary  condit ions for it. 

As is known, the Reynolds  equations for turbulent  motion can be ignored only when y > 0; the point y - -  

0 is singular for them, and boundary  conditions cannot  be imposed at y = 0. If a laminar  sublayer  is not considered,  

the boundary  conditions on the wall must be specified at some y = Y0, where Y0 is the level of roughness  (the level 

where the logarithmic profile of the velocity passes through zero, i.e., u -- 0). For Y0 there are  exper imenta l  data  

for liquid flows over surfaces with different coverings (grass, bushes,  asphalt ,  and so on). 

In aerated flows air does not reach the bottom of the flow, and consequently,  Y0 will be the same for a flow 

of a water-air  mixture.  There fore  we shall avail ourselves of this approach. We consider the following boundary  

conditions: 

for s tat ionary motion (O/Ot = 0): 

OU 
= = �9 - - = 0  p = l "  when y = y o  u 0 ,  p 0 ,  when y--) oo Oy ' ' 

for nonsta t ionary motion 

when Y=Y0 u = 0 ,  p = 0 ;  when y--, co u = 0 ,  p = 1 

and the following initial data: 

when t = t o u ( t  o ,y )  = U ( y ) ,  p (t o ,y )  = R ( y ) .  

Other kinds of boundary  conditions are also possible. With account for expressions (4)-(7) ,  system of 

integrodifferential  equations (3) with the given initial and boundary  conditions was solved by the difference method.  
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Fig. 2. Result of numerical calculations of the distribution 
and the density (b) over the vertical. 
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Preliminary calculations were carried out on a computer. In them the following parameters were adopted: ~ = 

n / 6 ,  Pliq = 1, a = 0.5, YO = 0.01, 

2 0 . 2 ( y - 0 . 0 1 ) ,  0 . 0 1  < y _ _ _  1 ,  
U ( y ) =  2 0 - 2 0 ( y -  1), 1 < y _ < 2 ,  

0 ,  y > 2 ,  
n (y) = 

1 
(y - 0.01),  

1,  y > l .  

0.01 _ < y <  1,  

The qualitative behavior of the solution is given in Fig. 2. From Fig. 2a it is seen that at a certain depth 

the velocity of the mixture has a maximum, which is located under  the conventional free surface. In an aerated 
flow there is no distinct free surface. From Fig. 2b it follows that conventionally it is located in the zone of y where 
the density of the mixture differs little from that of air (/9 = I). 

Thus,  in the present work we proposed a formulation of the problem of determination of the parameters of 

an aerated flow. A new hypothesis is proposed that allows one to describe Reynolds stresses more realistically. For 

a homogeneous  medium this hypothesis  leads to a logarithmic velocity profile, which is well confirmed by 
experiments. 

N O T A T I O N  

Pmix, Vmix, densi ty and velocity of the mixture; p, Pliq, density of air and the iiquid; v, Vliq, velocity of air 
and the liquid; s, volumetric concentration of air in the mixture, which varies in motion; a, velocity of the uniform 

slow rise of the particles of air; ~p, angle of inclination of the Surface of the slope to the horizonal; m, r, flux of 

matter  and momentum due to turbulent mixing; u, v, w, components of the vector of liquid velocity; t, time; u', 

v', w', pulsations of the velocity components; v, coefficient of momentum; k, coefficient of the flux of matter;  a ,  a 

certain number  smaller than unity; C, function of a;  f,  function of the coefficient of momentum; U, R, initial 
functions. 
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